Comparison theorems for functional differential equations with deviating arguments
نویسندگان
چکیده
منابع مشابه
Second-order Differential Equations with Deviating Arguments
where f ∈ C(J ×R×R,R) and α∈ C(J , J) (e.g., αmay be defined by α(t)=√t, T ≥ 1 or α(t)= 0.7t, t ∈ J). Moreover, r and γ are fixed real numbers. Differential equations with deviated arguments arise in a variety of areas of biological, physical, and engineering applications, see, for example, [9, Chapter 2]. The monotone iterative method is useful to obtain approximate solutions of nonlinear diff...
متن کاملNonlinear Oscillations in Disconjugate Forced Functional Equations with Deviating Arguments
For the equation where LnV(t) + a(t)h(y(o(t))) f(t) LnY(t) Pn(t) (Pn_l (t) (..-(Pl(t) (P0(t)y(t)) ’) .) ’) sufficient conditions have been found for all of its solutions to be oscillatory. The conditions found also lead to growth estimates for tle nonoscillatory solutions.
متن کاملExistence of Piecewise Continuous Mild Solutions for Impulsive Functional Differential Equations with Iterated Deviating Arguments
The objective of this article is to prove the existence of piecewise continuous mild solutions to impulsive functional differential equation with iterated deviating arguments in a Banach space. The results are obtained by using the theory of analytic semigroups and fixed point theorems.
متن کاملPERIODIC SOLUTIONS FOR p-LAPLACIAN FUNCTIONAL DIFFERENTIAL EQUATIONS WITH TWO DEVIATING ARGUMENTS
Using the theory of coincidence degree, we prove the existence of periodic solutions for the p-Laplacian functional differential equations with deviating arguments.
متن کاملQualitative Behaviors of Functional Differential Equations of Third Order with Multiple Deviating Arguments
and Applied Analysis 3 i gi 0 g 0 h 0 0, a t ≥ 2α a, βi ≤ bi t ≤ Bi, 0 < c1 ≤ h′ x ≤ c, αb − c > δ, gi ( y ) y ≥ bi, g ( y ) y ≥ b, y / 0 ) , ∣g ′ i ( y )∣∣ ≤ Li, 2.1 ii ∑n i 1{αbibi t } − c y2 ≥ 2−1αa′ t y2 ∑n i 1 b ′ i t ∫y 0 gi η dη.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1981
ISSN: 0025-5645
DOI: 10.2969/jmsj/03330509