Comparison theorems for functional differential equations with deviating arguments

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-order Differential Equations with Deviating Arguments

where f ∈ C(J ×R×R,R) and α∈ C(J , J) (e.g., αmay be defined by α(t)=√t, T ≥ 1 or α(t)= 0.7t, t ∈ J). Moreover, r and γ are fixed real numbers. Differential equations with deviated arguments arise in a variety of areas of biological, physical, and engineering applications, see, for example, [9, Chapter 2]. The monotone iterative method is useful to obtain approximate solutions of nonlinear diff...

متن کامل

Nonlinear Oscillations in Disconjugate Forced Functional Equations with Deviating Arguments

For the equation where LnV(t) + a(t)h(y(o(t))) f(t) LnY(t) Pn(t) (Pn_l (t) (..-(Pl(t) (P0(t)y(t)) ’) .) ’) sufficient conditions have been found for all of its solutions to be oscillatory. The conditions found also lead to growth estimates for tle nonoscillatory solutions.

متن کامل

Existence of Piecewise Continuous Mild Solutions for Impulsive Functional Differential Equations with Iterated Deviating Arguments

The objective of this article is to prove the existence of piecewise continuous mild solutions to impulsive functional differential equation with iterated deviating arguments in a Banach space. The results are obtained by using the theory of analytic semigroups and fixed point theorems.

متن کامل

PERIODIC SOLUTIONS FOR p-LAPLACIAN FUNCTIONAL DIFFERENTIAL EQUATIONS WITH TWO DEVIATING ARGUMENTS

Using the theory of coincidence degree, we prove the existence of periodic solutions for the p-Laplacian functional differential equations with deviating arguments.

متن کامل

Qualitative Behaviors of Functional Differential Equations of Third Order with Multiple Deviating Arguments

and Applied Analysis 3 i gi 0 g 0 h 0 0, a t ≥ 2α a, βi ≤ bi t ≤ Bi, 0 < c1 ≤ h′ x ≤ c, αb − c > δ, gi ( y ) y ≥ bi, g ( y ) y ≥ b, y / 0 ) , ∣g ′ i ( y )∣∣ ≤ Li, 2.1 ii ∑n i 1{αbibi t } − c y2 ≥ 2−1αa′ t y2 ∑n i 1 b ′ i t ∫y 0 gi η dη.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1981

ISSN: 0025-5645

DOI: 10.2969/jmsj/03330509